
JOURNAL OF COMPUTATIONAL PHYSICS 126, 274–285 (1996)
ARTICLE NO. 0137

A Multipole-Based Algorithm for Efficient Calculation of Forces and
Potentials in Macroscopic Periodic Assemblies of Particles

CHRISTOPHE G. LAMBERT,* THOMAS A. DARDEN,† AND JOHN A. BOARD JR.‡

*Department of Computer Science, Duke University, Durham, North Carolina 27708, †National Institute of Environmental Health Sciences,
MD A3-06, P.O. Box 12233, RTP, North Carolina 27709, and ‡Department of Electrical Engineering,

Duke University, Durham, North Carolina 27708

Received January 24, 1995; revised October 27, 1995

Early work on simulation of particle systems with peri-
odic boundary conditions was developed by condensedA new and efficient algorithm based on multipole techniques is

presented which calculates the electrostatic forces and potentials matter physicists in their simulation of materials with re-
in macroscopic periodic assemblies of particles. The fast multipole peated lattice-like properties. In crystals and other solids,
algorithm (FMA) can be used to compute forces within the n-particle a unit cell of particular symmetry is the building block ofunit cell in O(n) time. For the cubic lattice, forces due to a 3k 3 3k

the material. Once the unit cell is specified, the structure3 3k lattice of images of the unit cell, containing 33k n particles, can
be computed in O(nk2 1 k3 log k) time to arbitrary precision. The of the solid can be described in terms of copies of these
algorithm was readily added onto an existing FMA implementation, building blocks except for small deviations due to atomic
and computational results are presented. Accurate electrostatic vibrations. Thus, for the purposes of simulation, an ar-
computations were done on a 38 3 38 3 38 region of 100000-particle

rangement of the n charged particles within the unit cellunit cells, giving a volume of 28 quadrillion particles at less than a
need only be simulated, and long-range forces from a suit-twofold cost over computing the forces and potentials in the unit

cell alone. In practice, a k 5 4 ? ? ? 6 simulation approximates the ably large number of replicas of the unit cell simulate the
true infinite lattice Ewald sum forces (including the shape-depen- bulk phase behavior of the system.
dent dipole correction) to high accuracy, taking 25–30 % more time The Ewald sum technique is the most widely usedto compute than only the unit cell. The method extends to noncubic

method for computing electrostatic potential due to anunit cell shapes, and noncubic macroscopic shapes. Simple code
modifications allowed computation of forces within macroscopic infinite lattice of repeated unit cells [7]. Various algorithms
spheres and ellipsoids, and within near-infinite square, circular, and have been developed to compute the Ewald sum. The first
elliptical surfaces formed of unit cubes replicated along two of the to do so in better than O(n2) time, where n is the number
three axes. In addition to efficient periodic simulations, the method

of particles in the unit cell, was the O(n3/2) algorithm ofprovides a powerful tool to study limiting behavior of various finite
[15]. Since then, improved O(n log n) algorithms havecrystal shapes, as well as surface phenomena in molecular dynam-

ics simulations. Q 1996 Academic Press, Inc. been developed [3, 13, 21].
The Ewald sum is increasingly being used in the bio-

chemical community for solvent simulation [1, 16], espe-
1. INTRODUCTION AND MOTIVATION cially as truncation of the long-range electrostatic contribu-

tions has been shown to cause problems [11, 18, 22].
Much of molecular dynamics today concentrates on bio-

Much work has been done on the so-called N-body prob-
molecules. One particular challenge is the computation of

lem of computing the forces within only the unit cell. Earlyelectrostatic forces with included solvent effects. Typically
work dealt with small systems where a brute force O(n2)the experimentalist is interested in the dynamics of a sol-
all-pairs computation was sufficient. However, as simula-vated protein molecule or DNA strand. Surrounding water
tion sizes have increased, some algorithms have resortedmolecules must be simulated to properly deal with shielding
to cutoffs, where interactions outside of a given radius areof Coulomb interactions within the biomolecule. However,
neglected. A large amount of work has been done on theneglecting the larger aqueous environment outside the sim-
N-body problem, culminating in the O(n) fast multipoleulation box results in poor simulation of water molecules
algorithm (FMA) [8]. The FMA derives its speed fromat the box boundaries (i.e., there is a nonphysical vacuum
using series expansions to represent the potential due tothere), ultimately compromising the results of the simula-
distant groups of particles at local particle sites.tion. Periodic boundary conditions are perhaps the best ap-

Both the FMA and Ewald lattice sum concept wereproach to address this problem. The atoms within the unit
coupled together in [17]. In this work, the coefficients forcell feel forces due to near neighbors within the cell, as well

as forces due to a lattice of periodic copies of the unit cell. the series expansion of the potential of the unit cell must
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be translated from all infinite lattice sites (except the inner- descriptions for the electrostatic potential. Efficient evalu-
ation of potentials (and forces) for many point charges ismost 27) to the center of the original unit cell. Because

the coefficients are identical, they can be factored out of done with a truncated series expansion.
the sum, and an Ewald sum over the lattice sites computes

2.2. Multipole Expansionsthe transformation matrix which is constant and indepen-
dent of the contents of the unit cell. This matrix is applied The well-known multipole expansion describes the po-
to the multipole moments to get the local expansion for tential due to a set of charges within a disk of radius r
the infinite lattice except the central 27 cells. The innermost centered at c, at a point z outside the disk.
27 sites are not included in the sum, as the cells are not

LEMMA 2.1 (Multipole expansion) (Adapted from [8]).well-separated from the unit cell. These cells and the unit
Suppose that n charges of strengths hqi , i 5 1, ..., nj arecell itself are computed with the FMA, and the contribution
located at points hzi , i 5 1, ..., nj, with uzi 2 cu , r. Thenof the infinite surrounding lattice of unit cells is incorpo-
for any z [ C with uz 2 cu . r, the potential F(z) inducedrated at level 0 before the downward pass (see Section
by the charges is given by3.2.6). The limitation of this method is that only infinite

sums that are readily evaluated by Ewald-type methods
can be computed. One could also do small finite sums by

F(z) 5 2R(log(z 2 c)) On
i51

qi 2 R Oy
k51

on
i51 2 qi(zi 2 c)k

k(z 2 c)k .explicitly summing the transformation matrices of sur-
rounding unit cells, but until the present work, no general
method for swiftly summing large lattices of arbitrary shape

For computational purposes, the infinite series is trun-has been derived.
cated to p terms. The multipole coefficients array is anA new and efficient algorithm based on multipole expan-
array of p complex numbers, ha0 , ..., ap21j, where a0 is realsions is presented for computing the potentials and forces
and is the sum of all of the charges,due to a finite but extremely large lattice of periodic unit

cells. The method is not restricted to infinite sums, the
unit cell need not be centered, and an infinite variety of a0 5 On

i51
qi , (2)

macroscopic shapes is possible. The algorithm does not
require that the unit cell be charge neutral. Expressions

and complex elements ak for k 5 1, ..., p 2 1 are given byfor error bounds are derived, and the forces and potentials
can be computed to the desired accuracy with no truncation
of long-range forces.

ak 5
on

i51 2 qi(zi 2 c)k

k
(3)The method is first illustrated in 2D for expository pur-

poses and is then extended to 3D systems of particles. In
2D, we obtain an algorithm to compute forces and potential which is the multipole expansion of Lemma 2.1 with the
due to a 3k 3 3k square lattice of n-particle unit cells in 1/(z 2 c)k terms factored out.
O(nk 1 k2 log k) time. In 3D our algorithm computes a

LEMMA 2.2 (Multipole expansion translation)(see [8]).3k 3 3k 3 3k cubic lattice of unit cells in O(nk2 1 k3 log
Let a multipole expansion due to n charges in a disk ofk) time. We show that for small (constant) values of k, the
radius r be centered about c as in Lemma 2.1. Then theinfinite Ewald sum force values are approximated to high
center of the expansion can be translated to a new center,precision, effectively making the algorithm linear time in n.
c9, and have the resulting multipole expansion convergeWe then illustrate extension of the algorithm to arbitrary
outside a radius of r9 5 r 1 uc 2 c9u.noncubic macroscopic shapes, several of which have

been implemented. The main consequence of this lemma for this work is that
multipole expansions for several regions can be grouped

2. MATHEMATICS OF POTENTIAL ENERGY IN 2D together into a single net multipole expansion describing
the potential due to the collective region. One simply trans-

2.1. Introduction lates the multipole expansion for each small region in turn
to a common center and then adds the multipole coeffi-In two dimensions, the potential at z [ C due to a point
cients, ak , component-wise. The resulting multipole expan-charge of intensity q at z0 is given by
sion converges outside of a circle centered at the given
center with radius enclosing all of the smaller regions.F(z) 5 2qR(log(z 2 z0)), (1)

LEMMA 2.3 (Multipole to local expansion conversion)
(See [8]). Suppose that n charges of strengths q1 , q2 , ...,where R () is the real part of a complex number. Expressing

coordinates as complex variables makes for simple series qn are located inside a disk Da of radius a and center at za ,
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with uzau . a 1 b and a $ b. Then the corresponding
multipole expansion converges inside a disk Db of radius
b centered about the origin. At any point inside Db , the
potential due to the charges in Da can be described by a
Taylor series, or local expansion translated to the origin.
The worst-case error of evaluating the potential via this p-
term local expansion can be bounded by

A Sa 1 b
uzau Dp

, (4)

where A 5 on
i51 uqiu.

Note that this bound differs from Greengard’s original
derivation as it explicitly includes the radii of the multipole

FIG. 1. Aggregation of multipole expansions. The multipole coeffi-
and local expansions [5]. This result also holds in 3D. cients for the square unit cell on the left are identical to each of the nine

on the right. The nine on the right can be shifted and added together to
form a single net multipole expansion, and the process can be repeated.3. MULTIPOLE EXPANSIONS AND PERIODIC
Thus if there are n particles in the unit square, a multipole expansionCELLS IN 2D
for a square containing 9k unit squares with 9kn particles can be computed
in 9k steps of shifting and adding multipole expansions. That is, it is not3.1. Aggregate Multipole Expansions
necessary to compute the multipole expansion directly for all 9kn particles.

The following lemma provides the insight into how to
compute efficiently the potential of repeated unit cells.

S0 is a positionless square identical to the unit square.LEMMA 3.1. The multipole coefficients due to a set of
We normalize the dimensions of S0 to 1 3 1. S0 can bepoints z1 , ..., zn centered at c are identical to the multipole
enclosed in a circle of radius Ï2/2.coefficients due to a set of points (z1 1 y), (z2 1 y), ...,

(zn 1 y) centered at (c 1 y), for any y [ C. Si is defined recursively as follows: Si is formed of 9
copies of Si21 in a square of length 3i with enclosing radiusProof. The coefficient a0 defined by Eq. (2) remains
3iÏ2/2.the same, and coefficients ak of Eq. (3) are given by

M0 is the multipole coefficients array for S0 .

Mi is the multipole coefficients array for Si . Mi is recur-
ak 5

on
i51 2 qi((zi 1 y) 2 (c 1 y))k

k
5

on
i51 2 qi(zi 2 c)k

k
. sively formed by shifting multipole coefficients Mi21 cen-

tered about all nine (x, y) positions, for (x, y) [ h23i, 0,
3ij to (0, 0) and adding them together via Lemma 2.2.That is, the multipole coefficients for a cell with a given

arrangement of particles is independent of the position of
3.2.1. Recursive Stepthe cell. Hence the multipole coefficients for the unit cell

are identical to those of all of its copies. Furthermore, The algorithm is as follows:
because we can translate and add multipole expansions via

1. Compute a p-term multipole coefficients array, M0 ,Lemma 2.2, we can group sets of identical adjacent cells
centered at (0, 0) for the n particles in the unit square, S0 .together to form a larger area described by a single new
Sections 3.2.2 and 3.2.4 present two different schemes formultipole expansion. This can be repeated with the new
choosing p.larger area with corresponding expansion to form still

larger areas. Figure 1 illustrates this process. Given this 2. Compute each Mi , for i 5 1 ? ? ? k 2 2 using the
tool, we devise an algorithm for grouping together unit recursive definition of Mi above.
cells into larger cells, in order to quickly evaluate the forces 3. Take the full repeated particle assembly of 3k 3 3k

and potential in a large area about the central unit cell. unit squares, centered at (0, 0). Let i 5 k and invoke the
following recursive routine. If the current region of side

3.2. Algorithm
3i 3 3i is too close (defined below) to the central unit
square (or contains it), then recursively subdivide it intoWe present an algorithm for computing the long-range

potential within the unit cell due to all repeated unit cells nine squares of side 3i21 3 3i21, corresponding to nine
copies of Si21 . Otherwise, convert the multipole expansion,in a surrounding 3k 3 3k square lattice of unit cells. We

need some notation to describe our algorithm. Mi , to a local expansion about the unit cell via Lemma
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2.3, component-wise, adding the coefficients of the re-
sulting local expansion to a net local expansion due to
all macroscopic squares about the unit square. All 1 3 1
squares, S0 , that are too close, we denote the innermost
boxes and these will be dealt with in Section 3.2.6.

4. A net local expansion is now computed about the
unit cell for all macroscopic expansions that are not too
close. Process the innermost boxes and then continue with
the downward pass of the FMA [8], as detailed in Sec-
tion 3.2.6.

For a given error, «, using Eq. (4), we say a square Si is
too close if:

« , 9iA 1
ri 1

Ï2
2

zi 2
p

, (5)

holds, where ri 5 3iÏ2/2 is the radius of the circle enclosing
Si and zi is the distance from the center of Si to the center
of the unit square at (0, 0). The 9i A comes from there

FIG. 2. Scheme 1 spatial decomposition. Squares get exponentiallybeing 9i times as much charge, A, in Si as S0 . larger as they are exponentially further from the unit cell, in concentric
Clearly it is desirable to do multipole to local conversions square annuli. Illustrated is a decomposition with k 5 4, giving a 34 3

on as few macroscopic expansions as possible. Our notion 34 grid of unit cells. There are k 2 1 5 3 concentric annuli of 72 boxes,
R0 , R1 , R2 . The unit square in the center is shaded. Its eight surroundingof too close is dependent on the ratio of the macroscopic
squares have to be further subdivided into sub-boxes.expansion size to the distance to the unit cell, as well as

the parameters « and p, only the latter of which is adjust-
able. We derive two schemes for choosing p. The first
scheme is theoretically optimal, but practical implementa-
tion considerations lead to a second scheme.

p 5 max 5|
-

log S «

9k22AD
log S 1

Ï8
1

1
3k22Ï8

D
-

| , |
-

log S«

AD
log S 2

Ï8
D

-

|6 . (7)
3.2.2. Scheme 1

We derive a scheme for choosing p which results in the
decomposition of Fig. 2. Note that there are 72 unit-sized

In general, the former will be the maximum. Boxes in thesquares in a square annulus surrounding the black central
outermost annulus will have the most error if k is largeunit square. In general there are a constant 72 squares of
because the number of particles increases swiftly, whilesize 3i 3 3i surrounding the next smaller annulus of 72

squares. Let us denote the square annulus of 72 squares the separation ratio approaches a constant 1/Ï8. How-
of side 3i by Ri . ever, if k is small and « is small there can be more error

In each Ri , by symmetry, there are four squares that are in the expansions of ring R0 than Rk22 , and the latter term
equally closest to the unit cell. Each such square can be will be the maximum because the 1/3iÏ8 term makes for
enclosed by a disk of radius ri 5 3iÏ2/2, with corresponding slower series convergence for small i.
multipole expansion. The distance from the center of the Table I shows the number of terms 1 that are theoreti-
expansion to the origin is zi 5 2 ? 3i. Substituting these cally necessary in the multipole expansions for some repre-
values into Eq. (5), we find that for a given precision «, sentative values of « and k.
we must choose p satisfying

3.2.3. Scheme 1 Computational Cost

The multipole to local conversion, as well as the« $ 9iA S 1
Ï8

1
1

3iÏ8
Dp

, (6)
multipole translation needed to compute the initial expan-
sions, Mi , can be formulated in terms of a convolution
operation on polynomials. In 2D the O( p2) cost of thefor all i 5 0 ? ? ? k 2 2. The maximal values for p occur

for the innermost and outermost annuli, R0 and Rk22 . We multipole to local conversion can be reduced to an
O( p log p) operation via a 1D FFT-like convolution [9].thus obtain
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TABLE I This will never happen for a macroscopic expansion. No
matter how nonuniform the unit cell charge is, the largerExpansion Terms for Given Accuracy
macroscopic cells become increasingly uniform because

« k p they are formed of unit cells replicated over an evenly
spaced lattice. An analysis was done of the most optimistic

2.2e-16 20 73 case where macroscopic boxes are modeled as continuous
2.2e-16 10 60

plates of uniform density r 5 on
i51 qi , and a somewhat more1.e-6 20 51

realistic bound was derived for the growth of p [12].1.e-6 10 30
1.e-4 5 16

3.2.4. Scheme 2
Note. Illustrated are the number of terms, p, needed in the multipole

expansions to attain a given error « for a 3k 3 3k area of unit cells using The spatial decomposition of Scheme 1 can result in
Eq. (7). Machine epsilon on a Sun-4 is 2.2e-16. Most current simulations an excessively large number of terms, p, in the multipole
need less accuracy.

expansions. Computations with large p are impractical due
to runtime speed and numerical and storage considera-
tions. If we are forced to fix p at some constant, then a

The cost of computing the initial expansions, Mi for i 5 spatial decomposition of the form depicted in Fig. 3 results.
0 ? ? ? k 2 2 is proportional to np 1 kp log p as it takes np Substituting 3iÏ2/2 for ri in Eq. (5), we say a box is too
steps to compute the initial multipole expansion, M0 , and close if the following holds:
9p log p steps each time nine multipole expansions are
shifted and added to create successive expansions M1 ? ? ?
Mk22 via FFT techniques. In practice, FFT techniques are
unlikely to be used for this step, however, as it represents « , 9iA 1

Ï2
2

(1 1 3i)

zi 2
p

. (10)
a very minor proportion of the running time and it is
difficult to implement.

We can perform all of the multipole to local conversions
of the macroscopic expansions about the unit cell in time
proportional to kp log p 1 np. It costs p log p operations
to do a multipole to local conversion via FFT techniques,
which has to be done for a constant 72 boxes in each of
(k 2 1) rings. It then costs a final np steps to evaluate the
resulting local expansion at all n points in the unit cell.

In the limit of large k with fixed «,

lim
kRy

1
k

log S «

9k22AD
log S 1

Ï8
1

1
3k22Ï8

D5
log 9

log(Ï8)
. (8)

That is, asymptotically as k R y, p }(log 9/log(Ï8))k P
2.113 k. Because p grows as a constant times k, we may
replace p with k in our expressions for computational cost.
This gives us our asymptotically best running time of

U(nk 1 k2 log k). (9)

Note that, practically, k will be a small constant, certainly
less than 20, making the algorithm of order n.

FIG. 3. Scheme 2 spatial decomposition. We illustrate Scheme 2 forIt has been found in practice that the number of terms
k 5 4, giving us a 34 3 34 lattice of unit cells. The unit cell is at the centerp does not have to be chosen as large as Eq. (7) prescribes.
in black. Circles, Ci , of radius given by Eq. (11) are drawn with A 5 1,

The worst-case error bounds of the multipole to local con-
« 5 1e 2 6, and p 5 16. For i 5 0, 1, 2 we have respective radii of 3.35,

version arise only when all of the charge has the same sign 7.69, and 22.03. Squares Si must be subdivided if their center is within
circle Ci .and is placed at a point on the outermost edge of the box.
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Solving this for zi , we find a box Si is too close if its center cells and nearby image cells. Scheme 1 and Scheme 2 differ
in what comprises the macroscopic interaction list.lies within the circle Ci . That is, if

In the FMA [8], the unit cell is composed of subcells;
in 2D the unit square is recursively subdivided into four

zi , Ci 5
Ï2
2

(3i 1 1) SA
«
D1/p

9i/p. (11) subsquares, which in turn are split into four, recursively
down to a depth where a small number of particles are
within each square. The FMA consists of an upward pass

3.2.5. Scheme 2 Computational Cost and a downward pass. The upward pass repeatedly trans-
lates the multipole expansions of sets of four children to-To estimate the number of boxes of size Si , we need to
gether to form larger parent multipole expansions, untildetermine the number that will fit in the annulus formed
multipole expansions for every subcell up to the unit cellbetween the circle of Ci and Ci11 . An easier estimate is
are computed. The downward pass then computes the netsimply the number that fit in the circle Ci11 . We determine
potential due to all boxes in a given parent’s interactionthe number of boxes, Si of length 3i that span Ci11 :
list before shifting the local expansion down to its four
children.

The entire algorithm for macroscopic multipole expan-
sions comes in before the downward pass. All macroscopicCi11

3i 5

Ï2
2

(3i11 1 1) SA
«
D1/p

9(i11)/p

3i . (12)
cells that are not too close will be in the interaction list of
the central unit cell. The multipole expansions for these

We then square that, multiply by f, and simplify: cells are converted to local expansions and shifted on top
of the central unit cell. When an innermost box is found
to be too close to the central unit cell, however, both

f SÏ2
2

9(i11)/p SA
«
D1/p S3 1

1
3iDD2

(13)
squares must be subdivided into four children, and
multipoles for the four children in the distant square are
shifted onto the four children in the unit cube if they

5
f
2

81(i11)/p SA
«
D2/p S3 1

1
3iD2

. are not too close, according to whatever well-separated
criterion is used for the FMA in the unit cell. If they are
not well-separated, recursively subdivide the near and the

In general, moving away from the center, the number of
far cells until either all the children have had their

boxes of a given size 3i 3 3i increases exponentially and
multipole expansions shifted, or else the deepest level of

then drops off as i approaches k. The drop-off phenomenon
the recursive decomposition is reached. At the deepest

is due to the fact that only so many boxes of size 3i 3 3i

level, if two cells are not well-separated, then compute the
fit in a 3k 3 3k box. The upper bound is simply (3k/3i)2.

forces directly. Once all the macroscopic cells are dealt
Looking at large simulations, if values of p 5 16, i 5

with, the downward pass of the FMA can proceed. Finally,
15, « 5 1e 2 6, and A 5 1 are used in Eq. (13), we estimate

local expansions are evaluated at the leaves of the spatial
that the number of multipole expansions of box size 315 is

decomposition tree, giving the net potentials and forces
less than 6440. When a real simulation was done, we saw

due to the entire macroscopic space.
our estimate was conservative, as only 5900 boxes of size

The computational cost of computing the innermost
315 had to have multipole expansions evaluated for a k @

boxes may not be entirely obvious, as it involves recursively
15 simulation. We must sum over all sizes of boxes and

partitioning them to various depths. Because the decompo-
multiply the sum by p log p, the cost of a multipole to

sition of the innermost boxes is identical in form to that
local conversion, to obtain the total running time. Asymp-

of Greengard’s O(n) FMA, the runtime cost is still O(n)
totically, the algorithm is U(81kp log p) for any fixed p,

as there are only a constant number of innermost boxes
but the assumption is that a good balance can be struck

surrounding the unit cell. There is less actual work than a
between p and k to make the algorithm efficient in practice.

full FMA on all the innermost boxes, as the forces and
potentials need not be computed within the image cells.

3.2.6. The Innermost Boxes
4. EXTENDING THE METHODS TO 3DIn both schemes, a certain constant number (dependent

on «) of unit cells will be too close to the central unit cell
4.1. Multipole Expansions in 3D

to perform multipole to local conversions there. We denote
these cells, the innermost boxes. The expressions for multipole expansions in 3D become

more complex, as we may no longer resort to expressingOne can think of the algorithm as a variant of the FMA,
where the interaction lists within the unit cell and its sub- coordinates as complex variables. The details of the

multipole math will be omitted, but see [6, 10] for theboxes are augmented to respectively include macroscopic
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lemmas for 3D multipole expansions, multipole expansion are shifted and added to create successive expansions
M1 ? ? ? Mk22 via FFT techniques [6, 9].translations, and local expansions.

Doing the multipole to local conversion on all macro-
4.2. Algorithm scopic cubes takes time proportional to kp2 log p 1 np2

steps. It costs O( p2 log p) operations to do a multipole to4.2.1. Recursive Step
local conversion, which has to be done for a constant 702

The decomposition is very analogous to the 2D case. cubes in (k 2 2) shells. It costs a final np2 steps to evaluate
The entire computational region is a 3k 3 3k 3 3k cube, the resulting local expansion at all n points in the unit cell.
which is recursively divided into 27 subcubes based on Analogously with the 2D case, as k R y, we find that p
whether each cube is too close to the unit cube at center. increases linearly as
Analogously to Eq. (5), in 3D a cube Si is too close if

Flog(27)/log S4 ? Ï3
3 DG k P 3.94k. (17)

« , 27iA 1ri 1
Ï3
2

zi 2
p

. (14)
Our 3D algorithm thus runs in time

U(nk2 1 k3 log k). (18)
4.2.2. Scheme 1

4.2.4. Scheme 2Instead of annuli of 72 squares, we obtain concentric
3D shells of 702 cubes, exponentially increasing in size. Using Eq. (14), we say a cube, Si , is too close if
Cubes in the innermost shell, corresponding to R0 in the
2D case will end up being too close in 3D, so the inner
729 boxes will be dealt with as the innermost boxes. For « , A27i SÏ3 (3i 1 1)

2zi
Dp

(19)
shells R1 ? ? ? Rk22 , there will be six cubes equally closest
to the unit cube in each shell. These cubes have ri 5

holds, where zi is the distance from the center of the cube3iÏ3/2, and zi 5 2 ? 3i, and to obtain a given error, «, the
to the center of the unit cube at (0, 0). Solving this for zi ,following must hold:
we find a box Si is too close if its center lies within the
sphere Ci . That is, if

« $ 27iA SÏ3
4

1
1

3iÏ8
Dp

. (15)

zi , Ci 5
3i11/2

2 SA
«
D1/p

27i/p. (20)
Thus p is chosen to satisfy:

4.2.5. Scheme 2 Computational Cost

Using a similar analysis to the 2D case, we can estimate
p5max5|

-
logS «

27k22AD
logSÏ3

4
1

1
3k22Ï8

D
-

| , |
-

logS«

AD
logSÏ3

4
1

1
Ï8

D
-

|6 . the number of cubes Si that fit in a sphere of radius Ci11 ,
which is

(16)
4f
3 SCi11

3i D3

. (21)
It should also be noted that in the 3D case for a given

number of expansion terms, p, we obtain a coefficients
The key to not having too many cubes is to ensure thatmatrix which by symmetry ends up having p( p 1 1)/2
the fraction k/p remains small.elements instead of only p as in 2D. This increases the cost

of performing multipole expansion operations as we shall
4.2.6. The Innermost Boxessee in the next section.

The innermost boxes are dealt with analogously to the
4.2.3. Scheme 1 Computational Cost

2D algorithm. The only differences are that the unit cell
is recursively divided into eight subcubes as compared toThe cost of computing the initial expansions, Mi for i 5

0 ? ? ? k 2 2 is proportional to (np2 1 kp2 log p) as it takes the four squares of the 2D case, and a different criteria
for well-separatedness is used in 3D (see [2] for a discussionnp2 steps to compute the initial multipole expansion, M0 ,

and 27p2 log p steps each time 27 multipole expansions of such criteria).
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4.3. Other Macroscopic Shapes

It is relatively straightforward to extend the method to
compute potentials and forces of unit cubes in macroscopic
shapes other than a cube. Additionally, the unit cube may
lie anywhere within the macroscopic shape. The algorithm
for an arbitrary shape is essentially a preprocessor for the
regular macroscopic algorithm, and is as follows:

1. Choose k so that the macroscopic cube of size 3k 3
3k 3 3k centered about the unit cube completely encloses
the shape of interest. The algorithm is recursive, starting
with the entire macroscopic cube.

2. Each cube is recursively subjected to the following
FIG. 4. Running times for medium accuracy simulations. Runningthree rules until the algorithm terminates:

times are depicted for simulation sizes ranging from 10,000 to 100,000
particles, uniformly distributed within the unit cube. The algorithm was(I) If some, but not all, of the cube is outside of
run at medium ( p 5 8) accuracy for a 3k 3 3k 3 3k macroscopic volumethe shape, subdivide it into 27 cubes of side 3k21. If k 5
of unit cells. We implemented Scheme 2 with FFT-based multipole to0, discard the cube. local conversions for optimum performance. Within the unit cell, either
a four or five level uniform decomposition was used (depending on the(II) If the cube is completely inside the shape, pass
system size) corresponding to 83 or 84 cubes, respectively, at the lowestthe cube to the macroscopic algorithm, allowing it to com-
level of the decomposition. For comparison, it takes 10,500 s to do apute the potential due to that cube at the coarsest possible 100,000 particle direct O(n2) computation on the unit cell alone.

level. Terminate processing this cube.

(III) If the cube is completely outside the shape,
discard it.

plementation of the 2D case was foregone in favor of a
The algorithm is efficient, in that one need only recur- full 3D implementation. Typically electrostatic packages

sively subdivide large cubes when they cross shape bound- based on the fast multipole algorithm have been major
aries, so all the interactions are at the coarsest possible undertakings involving many months of work. Given that
level. The running time for this algorithm is, of course, the FMA is a subalgorithm needed as a part of the macro-
shape dependent, and at worst it is proportional to the scopic expansion algorithm, it was desirable to integrate
surface area of the shape divided by the surface area of the new algorithm presented here into an existing
the unit cell. multipole-accelerated electrostatics code. The local PMTA

Additionally, it is easy to periodically replicate unit [2] program was the logical platform to start from.
cubes in only one or two out of three dimensions. When It turned out to be relatively straightforward to re-tool
recursively forming macroscopic aggregate expansions, PMTA to incorporate macroscopic expansions, especially
one simply omits cubes along the appropriate axis. So for as no new multipole expansion routines had to be written.
instance, to simulate a macroscopic membrane, one would Most of the new code lay in two recursive routines, one
form aggregate expansions from increasingly larger cubes to deal with the macroscopic expansions and one to deal
only in the x 2 y plane. with the innermost boxes outside of the unit cell. Only

Scheme 2 was implemented in 3D.
5. IMPLEMENTATION

5.2. Running Times
5.1. Implementation Details

All computations were done on a Hewlett–Packard 735/
125 workstation. Figure 4 shows running times for theIn two dimensions, the implementation of multipole

expansions is rather simple as compared to the 3D case. new macroscopic multipole algorithm (3D Scheme 2) for
various sizes of moderate accuracy simulations. In theseTherefore, to test the algorithm, a 2D implementation was

first done of Scheme 1, omitting consideration of the inner- trials, eight expansion terms were retained in the expan-
sions ( p 5 8), which in free-space simulations correspondsmost boxes. Scheme 2 was later devised and implemented

in 2D, when it became apparent that using upwards of 40 to four-to-five significant figures in the potentials, and
three-to-four figures in the forces. For a given number k,terms in the multipole expansions in Scheme 1 resulted in

numerical instabilities. the potential and forces due to a 3k 3 3k 3 3k space of
unit cells are computed at all n atom locations in the unitSince a goal of this project was the simulation of electro-

static interactions in 3D systems of atoms, a complete im- cell. Hence k 5 0 corresponds to running the FMA on
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and potentials at the n particle positions due to a 3k 3
3k 3 3k volume of unit cells, minus the contribution of the
central 3k21 3 3k21 3 3k21 volume, giving the contribution
of the kth shell to the particle forces and potentials.

With a unit cell whose charges sum to zero, as is required
for the Ewald sum to converge, the magnitude of the contri-
bution to the potentials and forces due to the kth shell
decreases exponentially as k is increased. For a unit cell
that is not charge neutral, the potentials increase exponen-
tially with k, but the forces still fall off exponentially. For
k $ 2, log-plots of the force and potential contributions
are linear, making it possible to integrate the decreasing
exponentials to infinity. Thus potentials can be calculated
due to the infinite lattice when the unit cell is neutral,FIG. 5. Ewald sum comparison for a small box of water. The exact

Ewald sum forces were computed for an equilibrated cube of 216 water and the forces can be computed irregardless of the charge
molecules, and then compared with the forces computed by the macro- neutrality of the system, and without resorting to adding
scopic multipole algorithm with p 5 4, 8, 16, and 32 for increasing values fictitious charges. In practice a relatively small k approxi-
of k. Bonded interactions are excluded. The mean of the relative differ-

mates the infinite Ewald sum quite well without this extrap-ences in the forces falls off rapidly as k is increased; then it hits a point
olation.of no improvement as the error threshold from truncating the expansions

to a fixed number of terms is reached.

5.4. Comparison to the Ewald Sum

To explicitly compare an exact Ewald sum computation
to the results of the macroscopic multipole algorithm, weonly the unit cell, while k 5 8 is a 6561 3 6561 3 6561
used the Ewald code from [3] and compared the forcesvolume of unit cells. For the 100,000 atom unit cell, for
generated by the two algorithms. At first attempt, the an-k 5 2 ? ? ? 6, it takes about 25–30% more time to compute
swers were not agreeing, but this was traced back to thethe potentials/forces due to the macroscopic volume (in-
Ewald sum code neglecting to add in the so-called dipolecluding the unit cell and innermost boxes) as it does to
correction. If the unit cell has a nonzero net dipole mo-compute them within the n-particle unit cell alone. The
ment, d 5 on

i5 qiri , then the surface of the infinite latticecurves lose their flatness at k 5 7, due to the 27i/p factor
will be charged, which contributes to the potentials andin Eq. (20) which leads to an increase in the number of
forces within the unit cell. This effect is often ignored whenmacroscopic expansions as estimated by Eq. (21). As the
computing the Ewald sum, but a correct treatment adds asystem size is increased, the macroscopic part of the algo-
term that is dependent on the limiting shape of the infiniterithm makes up a smaller and smaller proportion of the
volume and the volume and dipole moment of the unit cell.running time, as there are a fixed number of multipole to

Deem et al. [4] derive a general dipole correction expres-local conversions for any given decomposition depth.
sion for arbitrary shapes. Applying this expression to theWith a very high accuracy simulation ( p 5 16) the curves
cubic-shaped infinite volume and taking the gradient, weremain relatively flat at k 5 8, and for a low accuracy
obtain a force correction for a given point charge qi :simulation ( p 5 4) they lose their flatness at k 5 4 (results

not shown). Later in Figs. 5 and 6, the method is compared
to the infinite Ewald sum. We see that for a p 5 4 simula-

ftoti
5 fEwaldi

2
4fqi

3V
d, (22)tion, it is pointless to compute k greater than 2, because

the error in the expansions exceeds the error in approxi-
mating the infinite Ewald sum with a 32 3 32 3 32 macro- where V is the volume of the unit cell. Interestingly, this
scopic cube. Similarly, for p 5 8 the threshold for k is 4, correction is the same as for the infinite sphere.
and for p 5 16, the threshold for k is 5. Thus the 27i/p

Correction of the Ewald sum forces brought them into
blowup appears to never figure into practical simulations. agreement with the forces computed by the macroscopic

algorithm. As k is increased, the macroscopic algorithm
5.3. Asymptotic Behavior of Forces and Potentials

better approximates an infinite cubic volume and the
agreement with the Ewald sum improves. Figure 5 showsIt is interesting to examine how the potential and forces

behave as k is increased. A small system was run with k the mean of the relative differences between the forces as
generated by the two methods on a small cube of waterranging from 0 ? ? ? 7, and the potential and vector compo-

nents of the force upon representative particle positions as k is increased. The formula used for the mean of relative
force differences iswere examined. For a given k, we computed the forces
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1
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i51

ifEwaldi
2 fMacroi

i2
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i2

. (23)

Simulations are run for values of p from 4–32, and the
curves go flat where it is pointless to increase k, as the
error threshold from truncating the expansions is reached.
In practice 32 terms take too long to compute, and the
accuracy from a p 5 16 and k 5 4 run is already on the
upper end of the scale. This is especially true considering
that most Ewald codes neglect the dipole correction which
can be several orders of magnitude larger than these dis-
crepancies.

To provide a more realistic test of the algorithm on
FIG. 6. Ewald sum comparison for a large solvated protein. The exactlarge biomolecular systems we calculated the electrostatic

Ewald sum forces were computed for a large solvated a 2 b barrelpotential and forces in an p80 Å cubic unit cell at the
protein and then compared with the forces computed by the macroscopiccenter of a 3k 3 3k 3 3k cluster of replicas. The electrostati-
multipole algorithm with p 5 4, 8, 16, and 32 for increasing values of k.

cally neutral unit cell consisted of a protein, the catalytic Bonded interactions are excluded. In comparison to Fig. 5, we see a
domain of the b-1,4-glycanase Cex from Cellulomonas fimi, similar rate of convergence to the infinite sum as for the small box of water.
eight sodium counterions, and 14455 water molecules, for
a total of 48097 atoms. The simulation system was built
using the AMBER 4.1 package [14]. Coordinates for the

lines of code had to be modified. Two code loops over threeprotein were taken from entry pdb2exo.ent [20] in the
dimensions were reduced to loops over two dimensions. ToBrookhaven protein data bank. Hydrogen atoms were
verify correctness, a direct O(32kn2) computation was doneadded using the AMBER Edit module, and these were
with small k and n, and agreement was reached in theminimized in vacuo, holding the rest of the protein fixed.
forces and potentials.After this the TIP-3P waters were added, again using the

The recursive algorithm of Section 4.3 was implementedEdit module, and eight waters were chosen at random from
for the ellipsoid and the sphere. As is expected, with largethose which were at least 6 Å distant from the protein, to
k, the spherical results agreed with those of the macro-be replaced by sodiums. The waters and counterions were
scopic cube, since the dipole term is the same. The ellipsoidthen subjected to 40 ps of MD simulation while holding
has a different dipole term, and indeed, the results differedthe protein fixed. Finally the entire system was subjected
from the cubic and spheroid cases.to 100 ps of unconstrained MD under constant pressure

By aggregation of unit cubes in only two dimensions,conditions, using Ewald summation via the PME option
analogous surface computations were tested for elliptical,[3] for long-range electrostatics. The equilibrated unit cell
circular and square surfaces one unit cube thick. In thewas a cube 78.9 Å on a side. Figure 6 shows the RMS
limit of large k, with a neutral unit cube, the forces andagreement of the Ewald computed forces to those com-
potentials are the same for square and circular macro-puted with the macroscopic algorithm with increasing k.
scopic surfaces.The convergence is about the same as for the small box

The running time for a 50000-atom unit cell within aof water. Note the error in the k 5 0 error is larger for
macroscopic sphere of radius 364 unit cells was 2.35 timesthe small water box as surface effects are more dominant.
longer than that needed to compute a 36 3 36 3 36 macro-In both simulations, potential energies were typically an
scopic cube which properly contains the sphere. Althoughadditional digit closer to the Ewald sum, following the same
the sphere volume is smaller, there are a greater numbercurves as the forces. The standard deviations in force differ-
of cells in the spherical simulation since outlying cubes areences were between 1 and 3 times the means, with the worst-
refined to fit the boundaries of the sphere as closely ascase outliers being two digits less accurate than the average.
possible. An ellipsoid with semiaxis dimensions of 364 3The relative error in the total energies for the solvated pro-
182 3 182 took 1.51 times longer to compute than thetein were good to 10 decimal places with k 5 8 and p 5 32.
macroscopic cube.A small unit cell without a dipole moment was also run,

and the forces were in excellent agreement, with no dipole
correction necessary. 6. PERFORMANCE IMPROVEMENTS

5.5. Other Macroscopic Shapes
The multipole to local operation takes the bulk of the

running time. Much of this time is spent calculating transferTo study a system replicated in only two of the three
dimensions (as for some membrane studies), about five functions of the coordinates of the macroscopic expansions
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which do not change from timestep to timestep. Not only
can this work be eliminated by computing the transfer
functions once, but they can be factored together to form
one net transfer function (or perhaps k, one for each size
of macroscopic cell) because the macroscopic cubes are
identical. With this improvement, the runtime curve of Fig.
4 is expected to be flat for all values of k. There will be
a large payoff for noncubic macroscopic shapes, as the
overhead of computing transfer functions for subdivided
cubes at the boundaries need only be done once—possibly
storing the constants in a file for future use. This is analo-
gous to the approach of [17], where the net transfer func-
tion for all infinite copies of the unit cell can be precom-
puted once with an Ewald lattice sum approach. Unlike
their method, we are not restricted to infinite sums, the
unit cell need not be centered, and an infinite variety of
macroscopic shapes is possible.

The macroscopic algorithm was built on top of PMTA
version 3.1, which is somewhat dated. Substantial perfor-

FIG. 7. Hexagonal macroscopic algorithm. Although the detailsmance and algorithmic improvements in PMTA 4.1 have
would have to be worked out, it is easy to conceive of a macroscopicreduced the running times of computing the k 5 0 cell by
multipole algorithm using a hexagonal unit cell. Because the hexagon is

two-to-three times. Once the macroscopic expansions are closer to circular, one might expect better multipole convergence than
added to PMTA 4.1, substantial performance improve- with a square unit cell.
ments are expected, particularly in computing the inner-
most boxes.

PMTA currently compiles to both serial and parallel can also be extended to 3D, where it has applications in
electrostatics of crystal lattices of various symmetry.versions on both distributed and shared-memory machines.

We have presently only a serial implementation of PMTA The new algorithm is appropriate to the case where
identical copies of a simulation volume are copied out towith macroscopic expansions. A parallel version is not

technically difficult, as the mechanism for doing many a great distance. One drawback to this and all periodic
techniques is that if, say, a protein is simulated in themultipole to local conversions in parallel has already been

optimized in PMTA. The good parallel speedups observed unit cell, a conformational shift in the protein would be
replicated over all copies of the unit cell, potentially creat-for PMTA are expected to carry through for PMTA with

macroscopic expansions. ing spurious correlations within the unit cell. This can be
alleviated by making the unit cell larger, as is facilitated
by fast N-body algorithms. Nevertheless, if unlimited com-7. FUTURE DIRECTIONS
putational resources were available, one would like to sim-
ulate a macroscopic system by looking at the dynamics ofIn [19] Smith showed how to calculate the electrostatic

energy of a unit cell centered within a large, finite, and every individual atom. Unfortunately, this is not likely to
be a realizable goal, even in the distant future.arbitrarily shaped crystal. If the energy of the unit cell is

denoted by EL , where L describes the size of the crystal, A future approach to this problem is to determine the
difference between multipole expansions of two differenthe showed that the limit as L tends to infinity is the usual

Ewald sum plus a dipole correction term. The algorithm large boxes of uniformly distributed particles and to see
if there is a way of adding ‘‘noise’’ to multipole expansionsoutlined in Section 4.3 allows one to compute EL directly

and, thus, to investigate the limit process studied analyti- to simulate similar but nonidentical regions. For example,
one could store multipole expansions for the unit cell atcally by Smith. Furthermore, as predicted by Deem et al.

[4], it is now possible to discuss the magnitude of the finite various points in the trajectory and randomly pepper them
throughout space to give the long-range potential contribu-size correction to the asymptotic result, as well as to discuss

energies in unit cells closer to the surface of the finite tions. Methods like this are not easily incorporated into
traditional lattice sum methods. Ultimately, one may hopecrystal.

There is no need for the unit cell to be square in 2D or to model electrostatics of large biological systems in terms
of sets of repetitive building blocks at differing hierarchiescubic in 3D. In 2D, hexagonal lattices group nicely into

larger hexagonal regions, making an analogous algorithm of detail. It is a formidable challenge to understand macro-
scopic biological processes at the atomic level. The neweasy to conceive of. This idea is depicted in Fig. 7, and it
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